
Applying NASA code
guidelines to JavaScript

Airspace is closer than you may think

Europa`s surface

denis.radin@gmail.com

@PixelsCommander

The universe respects
unification

Planets shape, the laws of physics,
and star system as a unit
are constant everywhere

Large Magellanic Cloud

“Unification — effective method to decrease
diversity. Aim for unification is to place
elements in particular order building strict
system which is comfortable to use.”

(c) Wikipedia

Rosetta`s detination comet

It can be hard to distinguish them
without being an expert

There are sixtillions of
standardized units...

Milky Way, Salamnca, Spain

Unification never stops

The same works for
engineering

ISS expedition 42 return

Diversity decreases
since only best

solutions survive...
Is it a Boeing or Airbus?

Can you distinguish
them at all?

I bet you can not because of unification...

But such a common thing as UI definition
is not standardized yet

We develop software
for 60 years

Souyz space ship docks ISS

http://www.youtube.com/watch?v=iMhdksPFhCM

All UIs will be unified

All planets
are round

Timelapse taken from ISS

Let`s guess...

Standard?

Voyager golden disks

Which tend to be standardized
as whole industry is

Aviation uses UIs

F-22, F-16, P-51

Unification, reliability, accessibility

Why HTML for flight
instruments?

Bombardier Q400 electronic dashboard

Highly valuable in the age of drones

Network accessibility

MQ-1 Predator

Decreases development cost standardizing
development flow and technologies stack

Unification

Work on NASA's InSight Lander

Browser is a GUI rendering system tested by
billions users daily

Reliability

NASA's Mission Control Center

Possibility to establish competitive UI
components (flight instruments) market

Components market

Mir station modules scheme

And first ever flight using
HTML/JS for displaying flight information

First HTML/JS flight
instrument

Diamond aircraft DA40

Live demo

Let`s try

http://pixelscommander.com/polygon/attitudeindicator/example/
http://pixelscommander.com/polygon/attitudeindicator/example/

http://www.youtube.com/watch?v=N-UiiUyzryA

● Reliability
● Memory leaks
● Resources consumption efficiency
● GPU accelerated path / alternative rendering

methods (Canvas, WebGL)

To consider?

Most likely because of your
expectations from JS developers

Scared flying
JS driven airplane?

Trust is based on
expectations of what is normal for JS

This is all about trust

Let`s have a look at
Jet Propulsion Laboratory

More guidelines?

JPL HQ

Can your JavaScript do this?

Voyager:
36 years without bugs

Voyager probe CGI

Performance and stability are priorities

Month without a reset ?

Code guidelines to the rescue...

No function should be longer than what can
be printed on a single sheet of paper

Rule #1

Sunrise on Saturn
photo by Cassini probe, JPL

MARGARET HAMILTON
next to printed source code

of Apollo mission

https://www.wired.com/2015/10/margaret-hamilton-nasa-apollo/
https://www.wired.com/2015/10/margaret-hamilton-nasa-apollo/

Long functions: less readable, not reusable,
harder to test, harder to refactor

Rule #1 - Do one thing

Sunrise on Saturn
photo by Cassini probe, JPL

makeCoffeeAndCookEgg(){

 let teapot = new Teapot();

 let cup = new Cup();

 let pan = new Pan();

 let egg = new Egg();

 teapot.on().then(teapot.fill.bind(cup));

 pan.on()

.then(egg.breake)

.then(egg.fill.bind(cup));

}

Rule #1 - Readability

Sunrise on Saturn
photo by Cassini probe, JPL

makeCoffeeAndCookEgg(){

 makeCoffee();

 cookEgg();

}

makeCoffeeAndCookEgg(){

 let teapot = new Teapot();

 let cup = new Cup();

 let pan = new Pan();

 let egg = new Egg();

 teapot.on().then(teapot.fill.bind(cup));

 pan.on()

.then(egg.breake)

.then(egg.fill.bind(cup));

}

Rule #1 - Easy to refactor

Sunrise on Saturn
photo by Cassini probe, JPL

makeCoffeeAndCookEggAfter(){

 makeCoffee().then(cookEgg);

}

makeCoffeeAndCookEgg(){

 let teapot = new Teapot();

 let cup = new Cup();

 let pan = new Pan();

 let egg = new Egg();

 teapot.on().then(teapot.fill.bind(cup));

 pan.on()

.then(egg.breake)

.then(egg.fill.bind(cup));

}

Rule #1 - Reusability

Sunrise on Saturn
photo by Cassini probe, JPL

makeCoffeeAndCookEgg(){

 makeCoffee();

 cookEgg();

}

makeCoffeeAndDoToast(){

 makeCoffee();

 doToast();

}

Long functions: less readable, not reusable,
harder to test, harder to refactor

Rule #1 - Do one thing

Sunrise on Saturn
photo by Cassini probe, JPL

Restrict all code to very simple control flow
constructs – do not use goto statements and

direct or indirect recursion

Rule #2

Mars, photo by Opportunity mission, JPL

Restrict all code to very simple control flow
constructs – do not use goto statements and

direct or indirect recursion

Rule #2 - Predictability

Mars, photo by Opportunity mission, JPL

● If you want to write reliable code – drop to write
cool one and write predictable

● Define coding standard and follow it
● Use static analysis to support standard and

reduce chance for defect: ESLint + whole lot of
plugins, presets

● Collect metrics: SonarQube, Scrutinizer, Plato
● Analyze types: Flow/ Closure Tools / TypeScript

Rule #2 - Predictability

https://github.com/dustinspecker/awesome-eslint
https://github.com/dustinspecker/awesome-eslint
https://github.com/dustinspecker/awesome-eslint
https://www.sonarqube.org/
https://scrutinizer-ci.com/
https://github.com/es-analysis/plato

Do not use dynamic memory allocation after
initialization

Rule #3

Ceres, photo JPL

GC might become your enemy

Rule #3 - Respect RAM

Ceres, photo JPL

http://3.bp.blogspot.com/-LNBSfvedEEM/VkxZomXBkvI/AAAAAAAAACI/EhsDaD0k-1g/s1600/output_oPN0rV.gif
http://www.bluewire-technologies.com/assets/InitialResults1.png
http://3.bp.blogspot.com/-LNBSfvedEEM/VkxZomXBkvI/AAAAAAAAACI/EhsDaD0k-1g/s1600/output_oPN0rV.gif

DevTools / Timeline

Measure

Ceres, photo JPL

DevTools / Profile / Take heap snapshot

Compare

Ceres, photo JPL

● Manage your variables with respect. Declare at
the top of scope to increase visibility, ESLint
vars-on-top. Sort for predictability sort-vars

● Watch for memory leaks, clean listeners and
variables when not needed anymore

● ESLint no-unused-vars
● Switch JavaScript to static memory allocation

mode via object pooling

Rule #3 - Respect RAM

http://eslint.org/docs/rules/vars-on-top
http://eslint.org/docs/rules/sort-vars
http://eslint.org/docs/rules/vars-on-top
http://eslint.org/docs/rules/no-unused-vars

No new objects in run time.
const pool = createObjectsPool(256);

let object = pool.getObject();
pool.releaseObject(object);

Object pooling?

Ceres, photo JPL

All loops must have a fixed upper-bound

Rule #4

Sunset at ISS

The assertion density of the code should
average to a minimum of two assertions per

function

Rule #5

Jupiter`s eye

The assertion density of the code should
average to a minimum of two assertions per

function

Rule #5 - Test well

Jupiter`s eye

● Higher tests density is less defects you get
● Minimal amount of tests is 2 per function
● Watch for anomalies in system state during run

time. Generate and handle errors in case of
critical failures

● Measure coverage but be aware, 100% coverage
does not necessarily mean you have well tested
code

Rule #5 - Test well

https://github.com/gotwarlost/istanbul

Data objects must be declared at the smallest
possible level of scope

Rule #6

City Lights of the Coast of India and the
Maldives

Mutable shared state decreases
predictability, testability since any part of

system can write there without
notifyng the rest

Rule #6 - No shared state

City Lights of the Coast of India and the
Maldives

ESLint pureness plugin

Rule #6 - No shared state

City Lights of the Coast of India and the
Maldives

https://github.com/rom-melnyk/eslint-plugin-pureness
https://github.com/rom-melnyk/eslint-plugin-pureness

The return value of non-void functions must
be checked by each calling function, and the

validity of parameters must be checked
inside each function

Rule #7

Young stars in NGC 7822

The use of the preprocessor must be limited
to the inclusion of header files and simple

macro definitions

Rule #8

On Churyumov–Gerasimenko comet

Nice to know
when using transpilers

Performance of ES6 features relative to the ES5

The cost of transpiling ES2015

Falcon9 OG2 launch

https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://github.com/samccone/The-cost-of-transpiling-es2015-in-2016
https://github.com/samccone/The-cost-of-transpiling-es2015-in-2016

The use of pointers should be restricted.
Specifically, no more than one level of

dereferencing is allowed. Function pointers
are not permitted

Rule #9

Interstellar dust

Dog.body.legs.run();
vs

Dog.run();

Rule #9 - LoD

Interstellar dust

https://en.wikipedia.org/wiki/Law_of_Demeter

Object1.object2.object3.method();
vs

const object3 = Object1.object2.object3;
object3.method();

Rule #9 - Call chains

Interstellar dust

All code must be compiled, from the first day
of development, with all compiler warnings

enabled

Rule #10

MyCn18: An Hourglass Planetary Nebula

All code must be compiled, from the first day
of development, with all compiler warnings

enabled

Rule #10 - Keep green

MyCn18: An Hourglass Planetary Nebula

What if we are already fu**ed up?

Rule #10 - If red?

MyCn18: An Hourglass Planetary Nebula

Do not panic.
Simply, prioritize,

refactor and add tests piece by piece.

Rule #10 - If red?

MyCn18: An Hourglass Planetary Nebula

Big step for web platform
to be perceived as reliable

Small step for
developers but...

But still, why not HTML/JS for instruments?

Ok, not that far yet...

Eurofighter maneuvering

But still, why not HTML/JS for instruments?

Ok, not that far yet...

SU-30 take-off

But still, why not HTML/JS for instruments?

Ok, not that far yet...

EFIS displays

what about ships?

And ...

denis.radin@gmail.com

@PixelsCommander

